首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   152篇
  免费   6篇
  国内免费   8篇
测绘学   2篇
大气科学   14篇
地球物理   46篇
地质学   47篇
海洋学   30篇
天文学   16篇
综合类   4篇
自然地理   7篇
  2022年   1篇
  2020年   2篇
  2019年   6篇
  2018年   4篇
  2017年   5篇
  2016年   5篇
  2015年   6篇
  2014年   9篇
  2013年   12篇
  2012年   8篇
  2011年   11篇
  2010年   4篇
  2009年   1篇
  2008年   6篇
  2007年   9篇
  2006年   12篇
  2005年   8篇
  2004年   9篇
  2003年   9篇
  2002年   2篇
  2001年   5篇
  2000年   3篇
  1999年   3篇
  1998年   3篇
  1997年   3篇
  1996年   1篇
  1995年   3篇
  1994年   4篇
  1993年   2篇
  1992年   1篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1982年   1篇
  1971年   1篇
  1968年   1篇
  1938年   1篇
排序方式: 共有166条查询结果,搜索用时 796 毫秒
81.
The main purpose of this study is to identify the major factors affecting groundwater quality by means of multivariate statistical analysis of the physico‐chemical compositions. Cluster analysis results show that the groundwater in the study area is classified into four groups (A, B, C and D), and factor analysis indicates that groundwater composition, 81·9% of the total variance of 17 variables, is mainly affected by three factors: seawater intrusion, microbial activity and chemical fertilizers. These results might be related to the geographical characteristics of the study area. The main influence on groundwater in groups B, C and D, which are close to the Yellow Sea and contain reclaimed areas, is the seawater intrusion by the present seawater, the trapped seawater, and microbial activity. Group A, however, has been used for agriculture for a long time, and thus groundwater in this group has been largely affected by chemical fertilizers. As groundwater flows from group A to group D according to its path, the governing factor of the groundwater quality gradually changes from chemical fertilizers to microbial activity and seawater intrusion. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   
82.
The seasonal evolution in the hydrochemistry of four types of wetland (pond, ice wedge trough, wet meadow and mesic site) was studied in a 0·5 km2 wetland complex in the Canadian High Arctic on the Fosheim Peninsula, Ellesmere Island. In the spring, a large influx of overland runoff from snowmelt quickly flushed away the solutes of the ice stored on the wetland surface over the winter, and homogenized the hydrochemistry across the entire wetland complex. As the surface flow receded, various wetland patches became hydrologically disconnected and their hydrochemical characteristics evolved differently. Although underlain by marine sediments and saline permafrost, solute concentrations in much of the wetland complex remained dilute compared with many Arctic wetlands. Through continued evaporation, melting of ground ice and localized thermokarst activities, the hydrochemistry of different wetland types acquired their distinctive characteristics as the summer progressed. This study demonstrates that large diversity in wetland hydrochemistry occurs even within a limited area, indicating the need to caution against generalizations based on limited spatial and temporal samples. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   
83.
In this study, a soil monitoring system for a hillslope with steep relief and shallow soil depth was designed and installed to represent efficiently the spatial and temporal features of soil moisture. The study was conducted on a mountainous hillslope of the Sulmachun catchment (northeastern South Korea). The positions of soil moisture sensors were determined through a sequential procedure including intensive geomorphologic surveying of the study area, surface and subsurface terrain analysis, and inverse surveying. Using 26 sensors, soil moisture data from 11 locations were measured and recorded at hourly intervals over 380 h from 6 to 22 November 2003. Soil moisture response patterns were captured for a few consecutive rainfall events. The monitoring results are discussed in the context of soil moisture variations with terrain attributes. The immediate recharge and fast recession after a peak are the primary features of soil moisture in the upper zone. Stability and significant storage increase are distinct characteristics of soil moisture in the buffer zone and the flow path zone respectively. Spatial distribution of temporal soil moisture variations can be characterized in terms of recession, stability and recharge depending upon the topographic classification of a hillslope for this approach. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   
84.
STREAMFLOW CHARACTERISTICS OF THE EASTERN QINGHAI-XIZANG PLATEAU   总被引:1,自引:0,他引:1  
The eastern Qinghai-Xizang (Tibet) Plateau is the headwater area for many large Asian rivers. Permafrost occurs above 4,200 m a.s.l. and glaciers occupy the summits and high valleys of the east-west trending mountain chains. Annual runoff generally increases with precipitation which is augmented southward by the rise in topography. Rainfall, snow melt, glacier melt and groundwater are the primary sources of stream flow, and the presence of permafrost enhances the flashiness of runoff response to rainfall and snowmelt events. Peak flows are concentrated between June and September. And winter is low flow season. Three types of runoff patterns may be distinguished according to their primary sources of water supply: snowmelt and rainfall, glacier melt and snowmelt, and groundwater. Large rivers generally drain more than one environments and their runoff regime reflects an integration of the various flow patterns on the plateau.  相似文献   
85.
A genetic algorithm was used to optimize the parameters of the two-dimensional Storm Surge/Tide Operational Model (STORM) to improve sea level predictions.The genetic algorithm was applied to nine typhoons that affected the Korean Peninsula during 2005-2007.The following model parameters were used:the bottom drag coefficient,the background horizontal diffusivity,Smagorinski’s horizontal viscosity,and the sea level pressure scaling.Generally,the simulation results using the optimized,mean,and median parameter values improved sea level predictions.The four estimated parameters improved the sea level prediction by 76% and 54% in the bias and root mean square error for Typhoon Kalmaegi (0807) in 2008,respectively.One-month simulations of February and August 2008 were also improved using the estimated parameters.This study demonstrates that parameter optimization on STORM can improve sea level prediction.  相似文献   
86.
The gravity-geologic method (GGM) was implemented for 2′ by 2′ bathymetric determinations in a 1.6° longitude-by-1.0° latitude region centered on the eastern end of the Shackleton Fracture Zone in the Drake Passage, Antarctica. The GGM used the Bouguer slab approximation to process satellite altimetry-derived marine free-air gravity anomalies and 6,548 local shipborne bathymetric sounding measurements from the Korea Ocean Research and Development Institute to update the surrounding off-track bathymetry. The limitations of the Bouguer slab for modeling the gravity effects of variable density, rugged bathymetric relief at distances up to several kilometers, were mitigated by establishing ‘tuning’ densities that stabilized the GGM predictions. Tests using two-thirds of the shipborne bathymetric measurements to estimate the remaining third indicated that the tuning densities minimized root-mean-square deviations to about 29 m. The optimum GGM bathymetry model honoring all the ship observations correlated very well with widely available bathymetry models, despite local differences that ranged up to a few kilometers. The great analytical simplicity of GGM facilitates accurately and efficiently updating bathymetry as new gravity and bathymetric sounding data become available. Furthermore, the availability of marine free-air gravity anomaly data ensures that the GGM is more effective than simply extrapolating or interpolating ship bathymetry coverage into unmapped regions.  相似文献   
87.
Spatial interpolation has been widely used to improve the spatial granularity of data, or to mediate between inconsistent zoning schemes of spatial data. Traditional areal interpolation methods translate values of source zones to those of target zones. These methods have difficulty in dealing with flow data, as each instance is associated with a pair of zones. This study develops a new concept, flow line interpolation, to fill the abovementioned gap. We also develop a first flow line interpolation method to estimate commuting flow data between spatial units in a target zoning scheme based on such data in a source zoning scheme. Three models (i.e., areal‐weighted, intelligent, and gravity‐type flow line interpolation) are presented. To test the estimation accuracy and the application potential of these models, a case study of Fulton County in Georgia is conducted. The results reveal that both the areal‐weighted and intelligent models are very promising flow line interpolation methods.  相似文献   
88.
Pyrite is a common and abundant sulfidic mineral subject to oxidation. The weathering characteristics of rock-bearing pyrite sometimes impose serious influences on the surrounding environment as the oxidation of pyrite (FeS2) generates acid drainage that results in the acceleration of rock weathering and the discharge of heavy metals into the environment. Such an accelerated weathering of rocks can reduce its mechanical properties and therefore menace the stability of rock structures, such as excavated slopes and tunnels. The evolution of physical properties of rocks and the chemical composition of drainage were evaluated in this study by a weathering test using a double Soxhlet extractor for 1 month in a laboratory setting. Three groups of biotite gneiss classified according to their pyrite content were used for the Soxhlet extraction experiment (group A with less than 0.1 wt% of pyrite; group B with about 3.3 wt% of disseminated pyrite; group C with about 5.65 wt% of vein type pyrite). The massive groups A and B had limited weathering on the surface; however, group C with the pyrite vein experienced weathering on the surface as well as along the pyrite vein. The weathering type regulated by the occurrence of pyrite apparently controlled the mechanical properties of the rock samples and the chemistry of the drainage. Groups A and B showed no significant quick absorption ratio after the 1-month experiment; however, group C had about 10 % increase in value. The uniaxial compressive strength of the three groups decreased about 20, 10 and 45 % for groups A, B and C, respectively. The mechanical properties of the samples and the chemical compositions of the drainage indicate that the oxidation of pyrite contained in the samples accelerated weathering, resulting in deterioration of mechanical properties of the rocks, and could result in the discharge of heavy metals and acid into the environment with the drainage.  相似文献   
89.
To verify the applicability of the time-continuous electrical conductivity (EC) measurement in analyzing the contaminant movement in the subsurface, a new column test device employing non-destructive four-electrode sensors was developed. Using the seawater to create a simple one-dimensional steady-flow condition, laboratory transport experiments were conducted and the EC breakthrough curves at different distances were obtained. Comparison between the EC breakthrough curves obtained from the EC sensors and those from the effluent solute chemical analysis showed that the estimated resident concentration from the EC breakthrough curves are useful in understanding solute transport in soils. The pore water velocity and longitudinal dispersion coefficient estimated using the computer code, CXTFIT, were found to be slightly underestimated, especially at sensors located at smaller distances from the outlet boundary. Results showed that the developed column test device employing the four-electrode sensors proposed in this study provides a non-destructive, convenient, and inexpensive means of evaluating the seawater transporting in soils.  相似文献   
90.
During break-up in the High Arctic, ice jams are insignificant, but large quantities of snow accumulated in the valleys strongly affect fluvial processes. Near Resolute, Cornwallis Island, many channels were first formed in valley snow drifts and their positions were unstable. Channels carved in the snow can easily accommodate changing discharge by a modification of their width, depth, and velocity. This causes considerable variation in the at-a-station hydraulic geometry relationships.

The availability of sediment is locally restricted by the snow lining along the channels, although some fluvial sediments deposited on the snow revealed that peak flows could entrain very large boulders. Several depositional features observed in the study area also indicated that fluvial activities can extend over a broad zone beyond the confines of the summer channels.

This study suggests that, by increasing discharge, snow jams enhance the erosional power of streams, but by interposing between streamflow and the valley floor, the snow can limit the supply of sediments. Whether the erosional or the protectional tendency dominates will depend upon the snow jam characteristics along various segments of the High Arctic streams.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号